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Cosmology is now a precise scientific discipline, with detailed theoretical models that fit a wealth of very accurate
measurements. Of the many cosmological data sets, the cosmic microwave background (CMB) temperature and
polarization anisotropies provide the most stringent and robust constraints to theoretical models, allowing us to ad-
dress fundamental questions about inflation, the nature of dark matter and dark energy, and particle physics [1, 2, 3].
But the CMB holds another, complementary piece of information: its frequency spectrum. Since COBE/FIRAS the
average CMB spectrum is known to be extremely close to a perfect blackbody, with possible spectral distortions
limited to ∆Iν/Iν . 10−5 [4, 5]. Although no distortion was detected, this measurement already places tight con-
straints on the thermal history of our Universe, ruling out cosmologies with extended periods of significant energy
release, disturbing the equilibrium between matter and radiation. More than 20 years have past since the launch of
COBE and from the technological point of view already today it should be possible to improve the sensitivity by
at least three orders of magnitude [6]. This opens a new window to the early Universe, on one hand allowing us
to directly probe processes that are present within the standard cosmological paradigm, but also opening up a huge
discovery space for non-standard physics.

The CMB spectrum constrains energy release occurring at redshift z . few× 106. A large number of astrophys-
ical or cosmological processes in this range exist, leading to predictions of observable distortions. A small sample
of processes follows.

• Reionization and structure formation: the first sources of radiation, supernova feedback [7] and structure
formation shocks [8, 9, 10] heat the intergalactic medium at low redshifts (z . 10), leading to up-scattering
of CMB photons characterized by a Compton y-distortion [11]. The distortion is expected to reach ∆Iν/Iν '
10−7 − 10−6 and thus could be measured at ' 100σ using present-day technology, teaching us about the
average temperature of the intergalactic medium [12], and promising way to find the missing baryons in the
local Universe which otherwise are hard to observe [9].

• Inflation: the Silk-damping of small-scale perturbations gives rise to a chemical potential (or µ-distortion)
and y-type distortion [13, 14, 15, 16], which directly depends on the shape and amplitude of the primordial
power spectrum at scales 0.1 kpc . λ . 1 Mpc [17, 18]. This allows constraining the trajectory of the inflaton
at stages unexplored by CMB anisotropies and other ongoing or planned experiments [19]. The distortion
is also sensitive to the difference between adiabatic and isocurvature perturbations [15, 20, 21], as well as
primordial non-Gaussianity in the squeezed-limit [22, 23].

• Cosmological recombination radiation: the cosmological recombination process of hydrogen and helium
introduces distortions at high redshifts (z ' 103 − 104), corresponding to ' 260 kyr, ' 130 kyr, and ' 18 kyr
after the big bang. The overall distortions is very small (∆Iν/Iν ' 10−9) but it has a unique frequency-
dependence which opens an independent path to determination of cosmological parameters (like the baryon
density and pre-stellar helium abundance) and direct measurements of the recombination dynamics, probing
the Universe at stages well before the last scattering surface [24].

• cooling of matter: the adiabatic cooling of ordinary matter continuously extracts energy from the CMB
photon bath leading to another small but indisputable distortion that directly depends on the baryon density
and is characterized by a negative µ- and y-parameter [25, 26].

All these examples demonstrate that the CMB spectrum provides a rich and unique source of complementary infor-
mation about the early Universe, with the certainty for the detection of spectral distortions at a level within reach
of present day and future instrumentation. The CMB spectrum could also place interesting constraints on decaying
and annihilating particles [27, 28, 29, 25], the power spectrum of small-scale magnetic fields [30], primordial black
holes [31], and cosmic strings [32, 33, 34], to mention a few more exotic cases. Deciphering all these signals will
be a big challenge for the future, but it holds the potential for new discoveries, providing additional, independent
constraints on processes that otherwise will remain a secret of our Universe.
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